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On p-adic L-functions attached to
motives over Q II

John Coates

Abstract. We propose a definition of the p-adic L-function of a motive M over @, assuming
M admits. at least one critical point, and p is ordinary for M. This corrects by a power of
i=,/—1 an earlier definition of B. Perrin-Riou and the author.

Intro(iuction

sense of Deligne [3], and let p be a prime number whlch is ordmary for M. In
a previous paper [1], Bemadette Perrin-Riou and I conjectured the existence of
certain p-adic measures, which provide the p-adic analogue of the complex L-
series of M In a letter to us, Deligne has pointed oul that there is a more elegant
) Also, in some cases, it is clear form his remark that at the conjeclure of [1] should
' be modified by a suitable power of & = \/—1’ which depends on the e-factor at
oo of M. Thus the aim of the present note is to give a new (and hopefully now
correct) fonnulauon of the conjectura of [1], based on Dehgne s observation, I
(13, mvolvmg Lhe crucial modifications of the Euler factors at oo and p of the
complex L-series of M. In addition, I have changed normalizations so that the
given critical point in this note is s = 0 (as in [3]), rather than s = 1 (as in [1]).
I am now fully convinced that this normalization is the most natural one from all
points of view, including the connexion with Iwasawa modules (which we do not
discuss here). For simplicity, I have tried wherever possible to folow the notation
of [3] in the present note. Finally, I would like to thank P. Deligne for his very
helpful criticisms of [1]. )

! 1. Modification of the Euler factor at «
| Let @ denote the algebraic closure of Q in C. For each prime v of @, Qu will
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denote the completion at v, Qv and algebraic closure of Qu, and G(Qv/Qu) the
associated Galois group.

As above, let M be a motive over Q, which is homogeneous of weight.w(M).
We follow the notation of [3]. Thus F,, will denote the involution of the Betti
realisation Hg(M) which is induced by complex conjugation. Let d+(M) be
the Q-dimension of the subspace of Hp (M) fixed by Feo. We write M for the
dual motive of M, and, for each n € Z, M(n) will denote the n-fold twist of M
by the Tate motive Q(n).

‘We only briefly recall the theory of the complex L-series attached to M. For
each prime v of Q, let Ly(M,s) denote the classical Euler factor attached to v
(including v = co). The global L-series is then the Euler product

A, 5) =] L. (M, 3),

which converges in the half plane R(s) > 1+w(M)/2. The principal conjecture
of the complex theory (which we shall tacitly assume) asserts that A(M, s) has
a meromorphic continuation over the whole complex plane to a function of order
< 1, and satisfies the functional equation

M AN B4,9) = &(M,5) \(#1(1),~3),
where (M, s) is Deligne’s global e-factor, normalized as in [2]. Recall that a
point s = n in Z is said to be critical for M if both the Euler factors at infinity

Loo(M, 8) and Lo, (M(1),—s) are holomorphic at s = n. Throughout this paper,
we assume the

- Hypothesis on M. The point s = 0 is critical for M.

Note that this is a different normalization from [1], where s = 1 was taken
to be the fixed critical point. Standard conjectures about the possible poles of
A(M, s) (which we shall assume) then imply that A(M, s) is also holomorphic
at s = 0. Following [3], we shall write

2 A(M) = /\(M,U), L(M) = L(M,0), e(M) = &(M,0).

Note that, because of different normalizations, the above &(M) is not the same
as that in [1].

One of the delicate points of the complex theory — which we shall see also
turns out to be basic for the non-archimedian theory — is that the global factor
€(M) can be written as a product of local e-factors (see [2],-and also [4]). Let A
denote the adele group of Q. Fix, once and for all, the Haar measure dz = [ dzy
on A, where dzo, is the usual measure on R, and, for cach finite prime ¢, dz, is
the Haar measure on @, which gives Z, volume 1. For simplicity, we suppress
all reference to this fixed measure in the subsequent notation. We must also fix_
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an (additive) character of A/Q, and there are two natural choices. Lel
the character of A/Q with components ) (z) = exp(2niz), and, for each finite
a %"}(z) = exp(-—2wiz), where we have identified Qq /zq with the g-primary
part of Q/Z. The second natural choice is (~9(z) = ) (-z). For the rest of
this article, p will denote one of +i. We then have

o

i YU ¢ = e(M‘):Hsu(M,\b(')):

C.r:‘ﬂ wt

where ey(M,4(#)) denotes Deligne’s local ey-factor (with the measure dzy
dropped from the notation), and the product is taken over all primes v of Q.
Note that we have

@) eo(M, pP)e, (M(1),p(-P) =1.

We also recall another operation on motives, which is of greater importance for
the study of non-archimedian L-functions than for the complex L-functions. Let x
be a Dirichlet character of @, and write C(x) for its conductor. Let p(,) denote
the groip of C(x)-th roots of unity in @, and let Gy denote the Galois group of
the field generated over Q by (). We can identify gx with (Z/C(x)Z)* via
the action of Gy on Bo(x) and thus we can identify y with a charaqter of Gy and
s0 also of the Galois group of @ over Q. This defines the £-adic realisations of x
(these are 1-dimensional vector spaces over the completions at the primes above
¢of any finite extension of Q containing the values of x). One can also define
Betti and de Rham realisations of x (see §6 of [3]) and thus attach a motive [x]
to x. We then define M(x) to be the motive over @ whose realisations are the
tensor products of the realisations of M with the realisations of [x].

We now define the modified Euler factor at oo, which we denote by £{) (M),
and which, as indicated, will depend on the choice of p = +i. Recall that the
usual Euler factor at oo dcpcnds' on'l'y' on the Hodge decomposition of Hg (M)ecC,
together with the C-linear involution Fo, of this space. It is given by

LW(M) = HLW(U)’
U

where U runs over the summands of Hp(M) ® C of the form either U =
HGR (M) @ H®) (M) with 5 < k, or U = HU)(M) (the exact definition
of Leo(U) is recalled, as needed, in the proof of the next lemma). The modified
Euler factor at oo is then defined by

4) W) =T[ L),
u

where, putting HU:¥) = HUk¥)(M) and h(j,k) = C-dimension of HU*), we
have ‘
() If U = HG® g H®) with § < k, then £L(U) = p0¥) Lo, (U)
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®) If U = HG4) with j >0, then LQU) =1
(c) If U = HU) with § <0, then
(V) = Loo(U)/(e0o (U, #1) Lo (U (1))
The explicit value of €. (U, %(#)) is given in the table of p. 329 of [3]. This
table, together with (3), shows that in case (a), we have
b (U,,p(ﬂ)) e P(khi+l}’-{:’,’=}
Note also that case (b) holds for U if and only if case (¢) holds for I7(1). In view
of these remarks, it is clear th:iu the modified L-function
® A2, () = £Q ML)
satisfies the functional equation ()
B
® A @0) = T o6 A )
Voo .
Up to a change of normalization and a power of i, £ (M) is the same as
the modified Euler factor introduced on p. 37 of [1], and we owe 1O Deligne
the suggestion to also transfer the e-factors as given in (a), (b) and (c) above.
That his suggestion works beautifully is shown by the validity of the following
strengthened form of Lemma 2.4 of [1]. If z,y are complex numbers, we write
z ~ y if there exists a 7 0 in Q such that ¢ = ay.

Lemma 1. Let x be a Dirichlet character, and n € 7 be such that x(-1) =
(1) and M(n)(x) is also critical at s = 0. Then

@ £ (M(n)(x) ~ (2m) 4 0L (M).
s
’T;' L}‘J Proof. Note that the weight of M(n)(x) is equal to w(M) = 2n. Also
M-\;\w&“ d*(M(n)(x)) = d* (M) because x(-1) = (~1)". The argument breaks up

&

Lk

L A

into three main cases, according to the three possible choices for U given above.
Put d+(U) = h(j, k) in case (a), d+(U) = 0 in case (b), and dt(U) = h(s,7)
in case (c). We shall prove that d*(M) = (d"(U), and that

L -

® LU R)E0) ~ (2mi) ™ DD ),
which plainly establishes (7). Put W = U(n)(x)-
Case (a). U = HUK @ H(*) with § < k. Then W = Hli-nk-n) g Hk-mi-n),
By definition, we have

Loo (U) = Tc(-9)Mi#), Leo(W) =Tc(n - )M,
Recalling that T'c(s) = 2(2x)~*T(s) ~ (2x)~" for 5 > 0 in Z, it follows from
(a) that

(O (U) ~ (@riyHIR, QW) ~ (2ri) 0=,

B
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whence (8) is clear in this case.
Case (). U=H (44) with § > 0. We first show that Fo always acts on U
by —1, so that U contributes nothing to d*(M). For brevity, write h = h(7,7)-
If F., acts on U as (~1)7, then Loo(U) = I'a(-7)", whence j is odd becausc
§ > 0. If Fuo acts on U as (~1)7+1, then Loo(U) = T'a(1 — §)*, whence j is
even since § > 0. Thus Fo, always acts.on U by -1. To complete the proof of
(8), we must show that § —n > 0, since then

il OW) = LOW) =1.
Case (b1). Assume 7 is odd. If n is even, x(~1) = 1, and so Fe, acts on W
by (~1)7-", whence Leo(W (1)) =Ta(sj-n+ 1)%. But j —n+ 1 is even, and
s0 we must have §—n > 0. If n is odd, x(-1) = -1, and Fo acts on W by
(~1)3-"+1, whence Loo(W (1)) =Tw(sj—n+ 2)*. But j - n+ 2 is even, and
so we must have j > n, as required.
Case (b2). Assume j is even. If n is even, x(-1) = 1, and Fo, acts on W
by (—=1)7="*1, whence Leo(W (1)) = Tr(j—n+ 2)%. But j—n+ 2 is even,
whence § > n. If nis odd, x(-1) = ~1, and Fo acts on W by (—1)i~", whence
Loo(W(1)) = Tg(j —n+1)". But j—n+ 1is even, and so again izn
Case (c). U=H (#4) with § < 0. We first show that Fo, always acts on U by
+1, so that U contributes h = h(j,5) to d*(M). If Fe acts on U as (-1)4,
then Lao (U(1)) = Tr(4 -+ 1)*, whente j is even since j < 0. If Foo acts on
U as (=1)7+1, then Loo (U (1)) = T'w(s + 2)", whence j is odd because j<O.
Thus Fe always acts on U by +1.

We next recall that, for s € Z, we have T'g(s) ~ (2r)(1=9)/2 for & odd,
T'r(s) ~ (2x)~*/% for s even and > 0. ‘
Case (c1). Assume j is even. We shall show that
©) £OW) ~ @r)*, LOW)~ (2m)0-mrink,
which plainly implies (8). Indeed, .

Leo(U) = Ta(-5)", Leo(U(1) =To(i+1)", ew(U,9))=1.
Hence
Lo (U) ~ @72, Loo(U(1)) ~ (2m) =72,

and the first assertion of (9) follows immediately. Suppose now that n is even,
50 that x(~1) = 1. Hence Fo, acts on W by (—1)’~", and 50

Loo(W)=Ta(n-35)" LW (1))=Ta(j-n+1)" ex(, P =1.
Now j — n is even, and s0 j — n < 0. We obtain
Loo(W) ~ (21)0=PM2, Lo (W (1)) ~ (27) -2,
and the second assertion of (9) follows in this case. Suppose next that n is odd,
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so that x(—1) = —1. Hence Fo, acts on W by (-1)?~"*1, and so
Loo(W) =Tg(n-3+1)*, Leo(W(1))=Ta(j-n+2)* eo(W, )=
Now 7 —n—1is even, and so j —n < 0. We obtain
Loo(W) ~ (2m)0=m=UM2, Lo (W (1)) ~ (2m) 9= 1/2,
and again the second assertion of (9) is plain.
Case (c2). Assume j is odd. We shall show that

(10) LO(U) ~ (20) ik, L W) ~ (2m)(-mhiln=DA)
which plainly implies (8). Indeed

Lew(U) =Tr(1-5)*, Le(U(1))=Ta(i+2)" ewu(U,$!")=p"
Hence -

Leo(U) ~ (21r][f—1)h!2, Loo(U(1)) ~ (zﬂ)—{j+1]h{2’

and the first assertion of (10) is clear. Suhposc now that n is even, so that
x(=1) = 1. Hence Fe, acts on W by (~1)7~"*1, and so

Loo(W) = Ta(n+1-7)*, Loo(W (1)) =Ta(j-n+2)", ool
Now 7 — n— 1 is even, whence j — n < 0. We obtain
Loo(W) ~ (2m) 0= DM2, Lo (W (1)) ~ (2m) 073 DM,
Since n is even, the sccond assertion of (10) is now clear in this case. Suppose
finally that n is odd, so that x(-1) = —1.- Hence Fe acts on W by (-1)-n,
and so ;
Leo(W) =Ta(n-5)*, Loo(W(1)) =Ta(j-n+1)" eo(W,p{) =1
Now j —n is even, and thus j —n < 0. We obtain
Lo (W) ~ (20)0 M2, Loy (W (1)) ~ (2m)("=9/2,
As n is odd, the second assertion of (10) now follows in this case. This completes

the proof of Lemma 1.’

W, .;,(P}) =

Note that the proof of Lemma 1 also shows that

(11) dt(M)=>_h(jk)
<0
Let us also define
(12) , (M) = Ejh(j, k).
j<o0

We can now give an equivalent form of Deligne’s period conjecture in 3], which
is better suited for questions of p-adic interpolation. Let C* (M) be the period
defined on p. 320 of [3]. Recall also that C*(M) is only determined up to
multiplication by a non-zero element of @. Having made a choice of C* (M),
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we define

q{f) (M)=ct (M) (2WPlr{M) :

The arguments in the proof of Lemma 1 show immediately that

Q) (M) ~ C* (M) LD (M).
Again using Lemma 1, we therefore obtain the following equivalent form of the
period conjecture of [3].

Period Conjecture. Let x be a Dirichlet character and n € Z be such that
x(=1) = (~1)" and M(n)(x) is critical at s = 0. Then

Ao (M()(0)-0 (30!

The following Lemma is implicit in the proof of Lemma 1, but we record it
explicitly as we shall apply it several times.

Lemma 2. Assume that x(-1) = (=1)" and M(n)(x) is critical at s =0. If
h(7,k) #0, then 5 <0 if and only if j < n.

Proof. Assume j < 0. The fact that M is critical at s = 0 implies that 7 < k, and
then it is shown in the proof of Lemma 1 that § < n. If we assume j < n, we apply
the previous reasoning with M replaced by N = M(n)(x) and N(-n)(x7?). FA

We now briefly mention two functorial properties of our periods Q(”](M ).
With x and n as in the period conjecture, we have

Ay M6 _ I)W[M)/\“’)(M(n}( X))

13
@2 QW (M) a=A(M)
Obviously we have the identity.
M = (_1)r(M}
Q=2 (M)
On the other hand, the formulae in the proof of Lemma 1 show that
M = (-1)"M),
5P (M)

We obtain (13) by applying this last identity to M (n)(x), and noting that Lemma
2 shows that (M (n)(x)) = (M) -nd* (M). The second functorality concerns
the functional equation. In view of (6), we would expect
A-A(E1(D) ~ 20 )/ ( IT eo(M,4)).
v# oo
This can indeed be verified using the arguments of §5 of [3] (but one must assume
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the additional Conjecture 6.6).

2. Modification of the Euler factor at p
Let p be a prime number such that M has good reduction at p, ie., for each
prime £ # p, the inertial subgroup Ip of G (ﬁp /Qp) operates trivially on the £-
adic realisation of M, which we denote by H,(M). We shall also consider the
twist of M by an arbitrary Dirichlet character x (M (x) will not, in general, have
good reduction at p). In [1], we introduced a modification of the Euler factor
at p of M(x). We now explain how our earlier modification can be viewed as
parallel to that given for the Euler factor at oo in §1. The reader will also notice
that, unlike the case at oo, the modification of the p-Euler factor does not depend
on our hypothesis that M is critical at s = 0; indeed, even when M is critical at
s =0, Lp(M,s) may have a pole at s =0.

Fix, once and for all, an emf)edding
4 Qe Q.
Recall that we assume that, for all £ # p, det(1— Froby 1X|H,(M)) has coef-
ficients in @ independent of £. Write P(M) for the set of inverse roots o of
this polynomlal in @, always laken with multiplicity. By virtue of the embedding
(14), we can talk of the p-adic order ordy(a) of each o € P(M).

Let £ be a fixed prime # p. Pick an cmbcddmg of @, into the complex field
C. Let Jy(M) denote the semi- -simplification of H,(M) & C as a representation

of G(Qp/Qp). Thus

Jg(M) = @alUa,

~where o runs.over P(M), and Ug is a 1-dimensional complex representation
of G(Qp/Qp) (ie. Uq corresponds to a quasi-character of Qp). Obviously, the
semi-simplification of H,(M(x)) ® C is

(15) Jo(M(x)) = ®aUa(x),

where Ua(x) denotes the twist of Ua by x. Now

(16) Ly(M(x),8) = I Lo (Ua(x), 5),
o

where Lp(Ua(x),s) = (1 - ax~*(p)p~*)~1. Also, we have
(17 ep(M(x),9?) = [ ep(Ua(x), 1)
=]
This is because Ip operates on H,(M(x)) via a finite quotient, and the ep of

complex representations of the Weil group are multiplicative with respect to short
exact sequences.

O £ (M)/Ly(M) =
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By analogy with (4), we now define
(18) £ (M(x)) =T £ (Wa(x)),
where _ ;
@ if ordp(e) 20, £{(Ua(x)) =1
(b) if ordp(a) < 0,

£ (Ua(x)) = Lp(Ua )/ (ep(Ua(x), $ @) Ly (Ta(1) (x71)-

Note that the ﬁ{")(Ua (x)) are always defined, i.e. in case (b), Lp(Ua(x)) cannot
have a pole because ordp(a) < 0.

Define hp(M) to be the number of a’s in P(M), counted with multiplicity,
such that ordp(a) < 0. The next lemma relates this modified Euler factor to that
in [1].

Lemma 3.

M (1-a)x

ordp (@)>0 g vt |

= pa(x} is

ordp(d](ﬂ
(i) If x is a non-trivial Dirichlet character whose conductor C(x)
a power of p, we have '
£ M)/ Lp(MO) = Go(x )M x (] @)W,
nlﬁp?ﬂ}‘:ﬂ
where G,(x~1) is the Gauss sum

G = Y xM(@)exp(-2mpa/C(x)).
z mod C(x)

Proof. (i) is immediate from the definitions since ep(Ua, q!»{r")) = 1 because Uq
is an unramified quasi-character of Q,. By a standard formula (e.g. (3.4.6) on p.
15 of [4]),

ep(Ua(x), ¥*)) = €p(xp, i) det Ua(Frob; ).
Also x(p) = 0 and a standard calculation shows that, since C() is a power of
P, s,,(x,,,tﬂ,, )) = G,(x~1). Thus (11) follows. ’
We now define
1 AL ()= D00 0) \M)/ (e (M) (40))7 iy
In view of our constmcuOn of the modified Euler factors, we clearly have the
functional equation

200 /\E’;L) (M) =

I1 e, 9). AL (D)

v#Ep,c0

r.‘”(n) D)

o

J}"'I"wh "
[ (- ) & ALubeat o e

'Lg, e pv’ﬂ‘-"‘" F"{‘"’

gwiuu-e

(h) LU1)
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here we have assumed ordp(a) € Z for all @ € P(M).

3. Conjecture about p-adic L-functions

Our aim is to express (and con‘ect at the same time) the principal conjecture of
[1] in terms of the function /\ (M 1.

‘We assume now that p is ordmary for M, and begin by recalling what we
mean by this (in many cases, much of our definition is redundant because of work
of Bloch, Kato, Fontaine, Messing, Faltings, ...). Let 1, be the local cyclotomic
character giving the action of G(Qp/Qyp) on Lhe group poo of all p-power roots
of unity. Then p 1s3’ordmary for M if the following conditions hold:

. 44 —» (i) Ip operates trivially on H,(M) for all £7 p;

(i) there exists a decreasing filtration F™Hp(M) (m € Z) of Hp(M), which is
stable under the action of G(Qp/Qp), and which is such that Ip operates on
the m-th graded piece F™/F™*! by ¢7;

(iii) for each m € Z, the Qp-dimension of F™/F™*! is equal to the complex
Hodge number h(-m,w(M) +m); - _

(iv) for each m € 7, the number of « € P(M), counted with multiplicity, such
that ordp (a) = mn is equal to the Hodge number h(m,w(M) —m). .

Lemma 4.°

(a) The number of o € P(M ), counted with multiplicity, such that ordp(a) < 0

() Let x be a Dtr:ch!e: character and n € Z be such that x(-1) = (-1)" and
M(n)(x) is critical at s = 0. Then a € P(M) satisfies ordp(a) < 0 if
and only if ordp(a) < n,

-Proof (a) follows from (iv) and (11). (b) follows from (iv) and Lemma 2. @

Lemma 5. Let x be a character of p-power conductor and n € Z be such that
x(~1) = (=1)™ and M(n)(x) is critical at s =0. Then

(1) /\“’] (M (m)(x DO (M)~

does not depend on the cho:cgz of p=4i. TV H e

Proof. If x = 1, then n is even, and the lemma follows from (13). It x # 1;
combine (13) with (i) of Lemma 3, and note that hy(M) = d*(M).

Recall that Q@(upoo) is the maximal abelian extension of Q, which is unram-
ified outside p and co. Put

(22) §=G(Q(pp)/Q)-
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We can view each Dirichlet character of 'p-power conductor as a p-adic valued

character of g, via the embedding (14). Let o Gi e (b‘i"
(23) R

be the cyclotomic character giving the action of G on ppoo

Principal Conjecture. If w(M) is even, assume that Q(-w(M)/2) is not a
direct summand of M. For each choice of the period Ct (M), there exists a
p-adic valued measure pc+(pg) on G such that f‘ﬂ U‘\ 5. ¢ (ﬁ) T L U'\)

& W () (M(n X tipe
(24) Liab‘ﬂy) ‘fgwa"d#m(m A po;l)[g)(;{))( 7 (P = i)
for all Dirichlet characters x of p-power conductor and all n € Z such that
x(=1) = (=1)" and M(n)(x) is critical at s =0.

Note that Lemma 5 shows that the right hand side of (24) is independent of
the choice of p = +1. This is essentially the principal conjecture of [1], expressed
in our new normalization. However, the power of 1 given in the conjecture of [1]
is not always correct, since it does not fully take into account the e-factores at
infinity.

Finally, we interpret the complex-functional equation p-adically. Having made
choices of C*t(M) and C*(M(1)), there will then exist (assuming Conjecture
6.6 of [3] is valid) a non-zero rational number ~, independent of the choice of p,
so that
(25) QCA@B1(1)) =1l (M) /(] eo(M,!P)).

voo

Let C(M) = the conductor of M, and let o) be the Artin symbol of C'(M)

in g.

Functional Equation. (p-adic version) Let x be a Dirichlet character of
p-power conductor, and let n € Z be such that x(-1) = (-1)" and M(n)(x)
is critical at s = 0. Then, if ¢ = xy™, we have

"L (a0 fg¢dﬂc+(u) v1¢7 om) f ¢ dﬂc«»wu)}

\.

Ly en, AWK
Proof. Let C(M) =[], v**M). If v # p, oo, then ¥ is unrarmﬁcd at p, and so

5U(M(ﬂ)(x), lli{p)) — gu(M,¢{F])U—ﬂﬂu[M)x—1(vau[M})-




7

The p-adic functional equation now follows on applying (20) to M (n)(x).
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